RNA-Mediated Regulation in Pathogenic Bacteria
نویسندگان
چکیده
منابع مشابه
RNA-mediated regulation in pathogenic bacteria.
Pathogenic bacteria possess intricate regulatory networks that temporally control the production of virulence factors, and enable the bacteria to survive and proliferate after host infection. Regulatory RNAs are now recognized as important components of these networks, and their study may not only identify new approaches to combat infectious diseases but also reveal new general control mechanis...
متن کاملCounting small RNA in pathogenic bacteria.
Here, we present a modification to single-molecule fluorescence in situ hybridization that enables quantitative detection and analysis of small RNA (sRNA) expressed in bacteria. We show that short (~200 nucleotide) nucleic acid targets can be detected when the background of unbound singly dye-labeled DNA oligomers is reduced through hybridization with a set of complementary DNA oligomers labele...
متن کاملRNA-Seq for Plant Pathogenic Bacteria
The throughput and single-base resolution of RNA-Sequencing (RNA-Seq) have contributed to a dramatic change in transcriptomic-based inquiries and resulted in many new insights into the complexities of bacterial transcriptomes. RNA-Seq could contribute to similar advances in our understanding of plant pathogenic bacteria but it is still a technology under development with limitations and unknown...
متن کاملNon-coding RNA regulation in pathogenic bacteria located inside eukaryotic cells
Intracellular bacterial pathogens have evolved distinct lifestyles inside eukaryotic cells. Some pathogens coexist with the infected cell in an obligate intracellular state, whereas others transit between the extracellular and intracellular environment. Adaptation to these intracellular lifestyles is regulated in both space and time. Non-coding small RNAs (sRNAs) are post-transcriptional regula...
متن کاملTranscriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria
In the ancient anaerobic environment, ferrous iron (Fe(2+)) was one of the first metal cofactors. Oxygenation of the ancient world challenged bacteria to acquire the insoluble ferric iron (Fe(3+)) and later to defend against reactive oxygen species (ROS) generated by the Fenton chemistry. To acquire Fe(3+), bacteria produce low-molecular weight compounds, known as siderophores, which have extre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cold Spring Harbor Perspectives in Medicine
سال: 2013
ISSN: 2157-1422
DOI: 10.1101/cshperspect.a010298